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fields in the limit of small wedge apex angle at the interface between the slab
and the wedge.

Using numerical techniques, the TE surface fields and the far field radia-
tion patterns are determined for different dielectric materials, wedge lengths

and slab widths. It is observed that by decreasing either the relative per-
mittivity of the dielectric or the slab width or by increasing the wedge length

a more directive antenna pattern results.

s




RADIATION FROM INTEGRATED DIELECTRIC MILLIMETER-WAVE

SLAB-WEDGE STRUCTURES

by

G. M. Whitman, New Jersey Institute of Technology, N.J.

S.

J. Maurer, New York Institute of Technology, N« Y-

A. R. Noerpel, Bell Telephone Laboratories, Holmdel ,N.J.

Prepared for
U.S. Army Research Office

Research Triangle Park, N.C. 27709

Contract No. DAAG29-77-G-0094

Project No:. DRXRO-EL-13677

New Jersey Institute of Technology

Newark, New Jersey 07102

The findings in this report are not to be construed
as an official Department of the Army position, un-
less so designated bv other authorized documents.




ABSTRACT

A method of analysis of an integrated dielectric slab waveguide and
wedge radiator is presented. Plane wave constituents in the slab are
assumed to excite the dielectric wedge. The solution in the wedge is pos-
tulated to be a finite, continuous spectrum of plane waves. Reflections
of these waves from the wedge boundaries are taken into account by intro-

ducing angularly dependent Fresnel reflection coefficients into the inte-

grands of the plane wave integral representations. These integrals reduce
asymptotically to the dielectric slab fields in the limit of small wedge

apex angle at the interface between the slab and the wedge.

Using numerical techniques, the TE surface fields and the field ra-
diation patterns are determined for different dielectric materials, wedge
lengths and slab widths. It is observed that by decreasing either the rela-
tive permittivity of the dielectric or the slab width or by increasing the

wedge length a more directive antenna pattern results.
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1. INTRODUCTION

The current availability of low loss silicon has provided the capabil- I
ity of constructing miniature integrated waveguide and antenna devices. Such
devices are of interest to U.S. Army scientists for use in the millimeter
wave transmitters and receivers being developed to improve data transmission
rates (1]. Since the antenna structures under consideration are constructed

from dielectric materials (silicon), they are tapered to improve their radia-

tion characteristics (increased pattern directivity and lower side lobe levels)
over a wide frequency band [1-4]. Although rigorous theoretical approaches to

study tapered dielectric structures in principle are available [12,13], the

solution to the dielectric wedge problem has not been worked out in detail.

Tapered dielectric geometries have been analyzed using local mode type
theories [6-11]. In these theories, the guided wave characteristics of a
tapered structure are determined from the corresponding waveguide characteris-
tics of the untapered structure. A first order solution based on Shevchenko's
rigorous approach [12] vields local mode results. Both Marcuse (8,9] and, to
first order, Shevchenko [12] obtained approximate solutions for the field along
a tapered slab waveguide joining two dielectric slabs of different heights in
terms of a local surface wave by using a complete set of transverse mode func-
tions and presented different methods for determining the expansion coefficients.
Balling (6,7,14] examined the near and far fields of a line source imbedded in
an infinite two-dimensional dielectric wedge. He compared a WKB solution to
a more accurate one based on plane wave superposition integrals which allowed

for ray optical and lateral ray interpretations. Methods using ray optics to

determine asymptotic (ray) modal fields in non-radiating, non-uniform or

=




tapered geometries (with boundary conditions which allow solutions to be ob-
tained by separation of variable techniques) have been thoroughly studied by
Maurer and Felsen ([15-18]. Their approach, however, does not apply directly
to the dielectric wedge. Bates [5) confirmed the conclusion of Maurer and
Felsen that source-free modal solutions for dielectric wedge structures can-
not be constructed. The rigorous, Full Wave approach of Bahar [13] can be
used to study the wedge problem, but it is extremely difficult. Shevchenko's
rigorous approach [12], which is similar to Bahar's/would require higher order

terms to be applicable to the wedge problem. An excellent survey of work done on

the dielectric wedge problem can be found in Balling's dissertation [6].

The method of analysis presented here, which provides meaningful physi-
cal insight into the wave processes taking place in a dielectric slab-wedge
integrated structure, is based on the work of Maurer and Siwiak [19,20]. 1In
that theory, a finite wedge segment is excited by a single slab mode. The
field in the dielectric wedge region is inferred from an integral representa-
tion of a Hankel function whose asymptotic form closely matches the ray struc-
ture of the slab mode in the common region between the slab and wedge. Inter-
preting this asymptotic solution in terms of rays leads to a ray-tracing proce-
dure whereby rays are multiply reflected from the wedge walls. The amplitude
and phase of the reflected ray fields are assumed to be altered by Fresnel
reflection coefficients. From this ray field an approximate expression for
the actual field on the wedge surface is then formulated in terms of a series
of integrals whose integrands contain saddle points or stationary phase points
associated with these ray trajectories (i.e., are obtained from saddle point
conditions which specify the ray structure). Very little numerical data was

obtained due to limited computational capability and a non-optimal choice of

]
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complex integration paths. Furthermore, the tangential magnetic field on the
wedge surface and the far fields were not formulated. After elucidating and
extending the theory to include all tangential field components on the wedge
surface and formulating a more efficient numerical scheme which reduced com-
putational time by one-to-two orders of magnitude, the wedge's surface field
and directive gain were shown to possess appropriate physical characteristics.
These include wedge surface fields whose intensities peak while phase varia-
tions indicate the launching of radiation and end-fire radiation patterns which

become more directive as the wedge length, relative to wavelength, is increased.

Since we are interested in a dielectric slab waveguide feeding a di-
electric wedge antenna, the modal solution of the infinite dielectric slab is
relevant and is reviewed in Section 2. 1In Section 3, a ray-optical solution
in a wedge geometry is presented. It is necessary to be familiar with this
solution in order to understand the construction, in Section 4, of the plane
wave integral representation for the field in a dielectric wedge. Numerical
results are discussed in Section 5, wherein comparisons are made between the

above plane wave integral approach, the local mode approach of Schering [11],

and experimental near field measurements made by Maurer and Gopen [21].
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2. THE DIELECTRIC SLAB

Since the intended purpose of this study is to examine the guidance

; and radiation properties of a dielectric wedge fed by a dielectric slab
waveguide, it is convenient, first, to review the field structure of the

infinite dielectric slab in detail.

E Exact Modal Solution
:

The guided mode structure of the dielectric slab waveguide is well

known (22 23]. Consequently, pertinent results will be presented without
detailed derivations. The geometry of an infinite slab waveguide is de- z

picted in Fig. 1. Region A ( !x! <Hd lyl < ® ) is occupied by a non-

e A wn

magnetic dielectric of relative permittivity €, while regions Bt ¢ x| = &,
iy$ < @) are free space. Since the geometry is invariant with the z-coor-
dinate, the spatial dependency of the source free field structure it
supports is taken to be independent of the z-direction. A time dependence
of exp[-iwt] is assumed and suppressed. Of interest is the lowest order =

even TE - mode.

For modes TE to y, Maxwell's field equations yield the component set

(Ez, Hw’ Hy). The electric field component satisfies the two-dimensional

reduced wave equation

il WA . |
(5;7 e FId = koer) E (x,y) = 0 (2.1)

while the magnetic field components follow from the relations

\ 3E 3E
] % 1 z , e -1 z

(2.1a)

; x  dwu 9y y o dwu 3x |




! .
The wavenumber k = @ v p ! \".r reduces to the free space wavenumber when
Q <

e the relative dielectric constant, {s unityv; My and € are the perme-
<

ability and permittivity of tree space. Using the method of separation

of variables and considering waves travellfng in the #+v-direction only,

we obtain as a solutfon to (2.1) the electric field fn the dielectric

(|x] < d) to be:
ik v

E = A cos (k x) e
X

]

kv (kvy
H = —& A co8(k._x) ¢ ° (R+2)
X wu -
(8]
Kk ik v
H = oA 15 A sin(k _x) e
v iu\ll N
Q
where
k: % k; - k: - \l‘:ll £ e \,‘. ,‘;l\
X v QO ovr

while the field structure in free space (|x| > d) can be shown to take the

form
—A‘(]x]—d\ fk v
3 A
E, = A cos(k‘d) o o
- s CIxf=d) kv
H = —= A cos(k d) e g (2.3)
X Wit X
Q
- - ¢ 'y
H, = 75— A cos kd e iy
- e ALK o
v x! lmun > X
with
Qe * k; - kl" - u\‘u“;‘n (2.3a)




The amplitude counstants of E_ in (2.2) and (2.3) have been chosen to

satisfy continuity of the E_ component across the air-dielectric inter-

! faces at x = ¢+ d. Continuity of the tangent magnetic field components

Hv at x = * d vields the eigenvalue equation

o
tan k d = —% (2.54)
X k‘

In addition, the above continuity conditions require the y-directed pro-
pagation constant kv in the dielectric and in the free space to be iden~

tical.

By replacing the cosine function in (2.2) by exponential functions,

the field solution can then be interpreted as a superposition of the two
plane waves, one progressing upward toward the interface at x = + d and
the other progressing downward toward the interface at x = - d. Hence,

we may write

with (2.5)

#1k x + ik

v
X y

Ei = (A/2) e

It is apparent from (2.2a) that these plane waves impinge on the inter-

i :
faces at angles y , measured relative to a surface normal, given by

tan wi = ky/k‘ (2.6)

Since the modal field takes the form of a superposition of two plane

waves, one incident and the other reflected from the afr-dielectric

=@




boundaries, it is quite natural to introduce reflection coefficients T
at both the upper (+) and lower (-) walls of the slab. Thus, at x = d,

(2.5) gives the reflection coefficient

A -i2k d _
["E€B/E =e * T (2.7)
From (2.4) and (2.7), it then follows that
1 - ja /k
- + o
F & X X (2.8)

1+ jax/kx

which by using (2.2a), (2.3a), and (2.6) yields the Fresnel reflection

coefficient for a perpendicularly polarized incident plane wave

4
cos wt-/ 1/Er o Sinzwi

/

cos wi*v i

1/e - sin‘w
r
The eigenvalue equation (2.4) specifies discrete values for the
separation constants kx’ kv and a‘, which in turn vields from (2.6) dis-
crete propagation direction angle wi. By combining (2.2a) and (2.3a) with

the eigenvalue equation (2.4), it follows that k‘d satisfies the relation-

ship
(kxd)‘sec‘(kxd) - (kod)‘(er -1 =0. 2.10)

Since we are interested in single mode propagation, the first zero of

(2.10) is needed and was found by using the Newton-Raphson method.

One can show that the exact modal solution given by (2.2) can be de-

rived using the concepts of ray optics [16,18,24], which are formally pre-

sented in Appendix A. TFor propagating in the +v direction, the rav-optical

solution takes the form of the two plane waves of equal amplitude given by

o 75 Wi i RARTCE IS

T T T
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P eq. (2.5). The ray structure in the slab is depicted in Fig. 2, wherein
ravs progressing toward the upper wedge wall (x = d) are identified by the
normalized phase function S1 and the rays progressing toward the bottom

‘ wall are identified by the phase S, (see Appendix A).




3. THE DIFLECTRIC WEDGE

While ray optical and full wave solutions are identical for the dielec-
tric slab problem, such agreement is not attained for the dielectric wedge.
Maurer and Felsen [16] have effected ray solutions for the wedge geometries
which possess constant surface reflection coefficients. This enabled the ei-
conal equation of ray optics (see eq.(A4)) to be solved by the separation of
variable technique, as was done for the dielectric slab [16,24]. Unfortunately,
this constraint on the reflection coefficient is not physically realizable for
the dielectric wedge. In the wedge, complex diffraction fields of the same or-
der of magnitude as the ray optical fields occur. These diffraction effects are
due to the occurrence in the integral representation of double saddle points
and multiple branch points, which are closely related to caustics and multiply-
reflected lateral waves. A caustic is an envelope of a system of real rays.
Lateral waQes are waves that transmit energy along a boundary between two me-
dia when a wave in the optically-denser side hits the interface at the critical

angle; as the wave travels parallei to the boundary in the optically-thinner

medium, it sheds energy back into the optically-denser material by refraction [25].

It has been recognized that the simpler approach of ray optics can pro-
vide important, though incomplete, information about asymptotic fields. Con-
structs of ray optics and results of a full-wave analysis are rigorously re-
lated [27]. 1In particular, the ray fields provide arguments of the functions
that enter into the uniformly asymptotic descriptions of exact field solutionms.
Thus, the method of ray optics provides a convenient starting point for study-
ing the wave guidance and radiation properties of the dielectric wedge. Con-

sequently, a review of the ray optical solution is warranted.

alu
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w with these ray trajectories such that cosw = a/r. For observation points
r < a, no real rays exist. In this region we have complex evanescent ray

solutions [16]. By requiring wedge rays at r = 8 =0, i.e., at the

Tr oo
interface between the slab and the wedge to evolve continuously from cor-
responding slab rays of incidence angle w = - W (see Fig. 3 and eq.(2.6)),

geometric construction stipulates that

v, = cos-l(a/rT) ) (3.8)

It is apparent that each modal solution in the slab corresponds to a
set of rays in the wedge where each set is associated with an eigenvalue
a=a which defines a cylindrical caustic r = a . Since we are considering
only the lowest order mode in the slab, we need only consider one modal set

= w
in the wedge or a rcos T

To complete the ray optical description of the field structure in a
dielectric wedge with surface impedances which insure constant reflection
coefficients, the amplitudes of the wedge rays must be ascertained. These
amplitudes were found by requiring either conservation of energy in a ray
tube [20,24] or by solving the lowest order transport equation(A5)[16]. Con-
sidering only rays propagating in the (-r) direction, i.e., toward the tip
and assuming C1 = -C2 = C in (3.5), the electric field can then be shown

to be expressed by

E =E +E
2 z z
-jk [(r? - 32)3 - a cos-l(a/r) ] tik(ab+ ¢) (3.9)

=11=




The eigenvalues a = a are specified by (3.6) and are related to slab ray
directions by (3.8). The arbitrary constant ¢ in (3.9) follows directly

by requiring continuity of phase across the transition region at r = T

8 = 0 in the limit of small 3 (see Fig. 3).

B. Plane Wave Integral Solutions When Reflection Coefficients Are
Angular Dependent

A modal ray description of the field in a dielectric wedge with constant
reflection coefficients at the air-dielectric interfaces and for propagation
towards the tip in the region Ky 2 E % &y = 8/2 < 8 < 3/2 has been obtained
(see 3.9). It is apparent from (3.9) that the field amplitude and hence
energy density become infinite as r -~ a. This behavior is also indicated
by the convergence of ray tubes at the cvlindrical caustics r = a - Thus,

simple geometric optic arguments break down and indicates that a more uniformly

asymptotic formulation of the modal field solution in the wedge is required.

In the integral formulation by Maurer and Siwiak [19,20], multiple la-
teral wave~type diffraction effects are indicated by the occurrence of multiple
branch points {n the angularly dependent reflection coetfficients, Attempting
to isolate the individual lateral waves and their reflections was not possible
since the interaction of the branch point effects was found to be important,
i.e., they could not be treated as {solated branch points. The overall effect

could only be accounted for by numerical integration techniques. A reformula-

tion of these plane wave integral representations is given below.

To justify the postulated form of the integral representations for
the modal field on the surface of a dielectric wedge (see (3.34) and (3.35)),
consider two plane wave solutions to the two-dimensional scalar wave equa-
tion which are assumed to propagate in the +v direction.

=12~




jlk = -jk_x jk y
x = 5
E,=E +E =(8 e © +a e *)e ? (3.10)

where ky =/ Kk - k® > 0. By transforming this solution into polar coor-

dinates via the relations

k =k cos a ky = k sin a

we obtain

RER e A e bl B et R

Eq. (3.11) represents two plane waves which progress in the directions

*
$ =01+ and p = - toward the origin in xy-space, respectively.

A more general solution to the wave equation can be constructed by

superposition [26]. Hence, we may write

B
1 T8 ¢ =
E: ) A+(a) e-Jkr cos (T4 Q)da (3.12a)
and a[ "B
"
2 - / T K (o) e 3kE coslatg) i

2\

2
p - 5 2 "
with A7 (a) an analytic function dependent on . Ez represents a bundle of

plane waves propagating in the directions a, < a < 81 toward the upper

¥

wedge air-dielectric interface; E; identifies a set of plane waves progres-

sing toward the lower wedge wall in the directions o, < a < 8, .

*
Specification of wave motion toward the origin is relevant in polar coordi-
nates since our main concern is with the effects of wave guidance toward the
tip of the wedge.

] Y=

A




In an unbounded domain, solutions to the wave equation in polar coor-

dinates are of the form [26]

E w2 Chr) oot (3.13)

z v

where v is a separation constant and Zv(kr) represents a general cylinder
function. For waves approaching the origin, Zv becomes a Hankel function
of the second kind whose integral representation in the complex W'-space

is

Hii)(kr) = % (‘ g b nak W eika(w' - W/2) dy! (a4

2

where v has been set equal to ka and the path P, is defined in Fig. 5.

The ray optical interpretation of the asymptotic form of solution
(3.13) with Zv given by (3.14) and v-positive is depicted in Fig. 6. As
illustrated, rays are trajectories orthogonal to the wave fronts and tangent
to the circular caustic r = a. Since our wave bundles (3.12) also approach
the origin and we expect product separability as in (3.13), let us assume

that the angular dependent coefficients in Ez can be expressed as

At(a) = B: ejka(a-HIZ) N B: independent of «. 63 15)

Substitution of (3.15) into (3.12a) and (3.12b) gives

8
7~ ) -
E: «p® { o-Jkr cos(lHu-¢) + jka(a-N/2) , (3. 16a)
/
A
. - \ % - > Q= 2 p
£ =3 ok cos (a+d) + jka(a-=1/2) i (3.16b)
Qs
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From Fig. 3, it is clear that the coordinate © is more convenient than the

IS I, AR e

» coordinate. Setting ¢ = ¢ - 3[1/2 reduces (3.16a) and (3.16b) to
]
/ 5 )
= - S =1 a(a=1/2
Et . i 5/ i jkr sin(a-2) + jka(a-ll/2) S (3.17a)
1
2

~ikr sin(a+d a-N/2
o Jkr sin(atd) + Jkala-l/2) 4. (3.17b)

E'-B'/
z
Qo
As in (3.13), the 2?-~dependence can be isolated by introducing the transfor-
mations w=a - d in E: and w = @ + 8 in E;; hence
+ + e-jka(ﬂ/z-

E =B

-
<

8,-8 . :
2) / 1 . jkr sinwt jkdwdw e
/
a,-0

170

8,10
- - - 2 -
E] =5 e jka(l/-+6)’//’
QAL+e

and

-jkr sinw+ jkaw
. b (3.18b)

At the upper wedge wall, i.e., when ¢ = 3/2, the ray bundle E: in (3.18)

reflects into the ray bundle E; as shown in Fig. 7. From the geometry we

see that a varies in (3.18a) between a = w. =~ 8/2 and 3, = w, + 3/2, where

wr is equal to the angle of incidence of the plane waves in the slab, and

in (3.18b) between ay = wr - if and 52 - Wy -

Fig. 7 for specification of region 1 on the upper wedge wall), the field is

. Hence over region l, (see

r3 |0

given by




a L
e T_RY /9 | jkaw - jkr sinw
gF, = gF @ IRRERNZ | . (3.19a)
. g8
T
and
A
a F
=3 S, o\ 19 2t E
=8 e jka(ﬂ+o)/-l) ejkaw jkr sinw dw (3.19b)
& 8,8

Furthermore, B+ = B . This follows from symmetry by noting that, for ex-
citation of the wedge by a symmetric slab mode, the field over the top and
bottom surfaces of the wedge (9 = +3/2 and -3/2, respectively) must be iden-
tical. Consequently, the incident wave bundle E:l illuminating region 1 on
the upper wedge surface equals the field E;l which illuminates region 1 on
the lower wedge surface, and both are superpositions of plane waves which

span the angular range b B/2 < w< WT + B8/2. Hence, from eqs. (3.18a)

and (3.18b), B+ = B = B, and we may write for the field over region 1 on

1
the upper wedge wall (9 = R3/2):

&g =
™ i
Ez1 & 31 e-jka(n-B)/Z l (1 + FY) ejkW(w) i (3.20)
\eT-B.

where the reflection coefficient on the upper wedge wall is given by

T + o kAl L o

Fl Ezl / Ezl e =T (3.21a)
and

W(w) = aw=-r sinw (3. 21b)

Eq. (3.21a) also follows from the modal resonance relation (3.6) for the

A

lowest order mode (m = 0). Furthermore, for small apex angles 8 it follows

from (3.8) and the relationship sin 3/2 < 8/2 = d/rT that expression (3.21a)

.




reduces to eq. (2.7) with o given by the Fresnel polarization dependent

reflection coefficient (2.9).

The integral representations for the magnetic field components follow

directly from Maxwell's source free equations

T e ,H.=-fl—\—'a (3.22)
% Junr 08 2z 5 jwy 3r 2z

Applying (3.22) to the integrals (3.17a) and (3.17b) and following the same

procedure which led to obtaining (3.18a) and (3.18b) results in giving for

the magnetic field components

+ = F =
Hr = Ht + Hr . l*l_3 - Hﬁ + H:1 (3.23)
with
-8 =9
FURNE i o KW (w) -ka(11/2-8)
Hr e B cosw e dw e J £ (3.23a)
l /
31-6
> ,~ 8,48
H; = | %T ; cosw ejkw(w) dw | e—jka(ﬂ/2+€) (3.23b)
A,+0 '
and
3,-0
+ 1 : b
H; w il %r // sinw eka(w) dw e—jka(ﬂ/- %) (3.23¢)
\ / /
_{l-e
82+6 \
- / Y - %
HS = | %T sinw ejkw(w) dw | e Fhalli/2+9) (3.23d)
J
+

=
where W(w) is given by (3.21b). Hence, for 9 = 3/2 and illumination over

region 1, (3.23) reduces to

-]y
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B T
—Aka(T<R) /9 :
H o e Jka(1-8) /2 f, cosw [l - T+] eJRW(W)Jw (3.243)
rl " = 1
w, -8
¥
and
B 3 Wop ;
- +3) /2 - + ikW )
L stow 1+ 7] 0 (3.24b)
i w,r-:

3 ’ - -
where use was made of the fact that B =8B = B .

The surface field components specified by (3.20) and (3.24), however,
do not represent the actual physical situation. If we now assume that the
reflection coefficient is angular dependent and given by (2.9) with w' re-

placed by w, we may rewrite (3.20) and (3.24) as

"
. -'T
—3lea (M=8Y 72
E_ =B o Jkall=8)/2 [ © o | regyy I (W gy (3.25a)
zl 1 J
Vr*o
B “r
e ) <
T e T T TSl (3.25b)
' W —B
T
and
Bl ~ika(1-8)/2 < JKW ()
qu et il )( sinw [1 + T(w)]e dw (3.25¢)
8

The integral expression (3.25a) agrees with eq. (42) of [24], which was de-
rived by inferring the integral expression from a ray optical development
whereas in (3.25) the development follows from a finite superposition of

plane waves following the ray trajectories.

In order to understand how the signal illuminates the entire wedge

surface, it is necessary to track the wave bundles as they progress along

=} 8=
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the wedge toward the apex. Consider the situation of once reflected beams

and illumination of region 2 on the wedge air-dielectric interface (see Fig.

+
7). From geometric construction, upgoing plane waves EzZ which illuminate

- 38/2 <o < w, - R/2,

region 2 are confined to the angular directions w T

T

whereas reflected waves E; are confined to the directions Wp T 5/2 < o

2

< wp = 38/2. As a consequence, eqs. (3.18a) and (3.18b) take the form

w.,—B

3 g
E+2 = B; e—Jka(H_B)/Z (’ ejkW(w) dw (3.26a)
wT- R
and
wT-B
E;z = B, e-jka(H+8)/2 ’}/ ejRW(w) dw (3.26b)
wT -2R

where W(w) is given by (3.21b). Hence, at 8 = 8/2 along region 2 in Fig.

7, the surface illumination from the beam progression toward the tip is

given by
wT-B
» B & -jka(-8)/2 + jkW(W)
E,, =E, + Ezz =B, e / (1 + I‘z) e aw (3.27)

wT-ZB

with reflection coefficient T; given by

sE g, =88 2 ¢ (3.27a)

£
I‘2 L i T

and symmetry requiring that B; = B; =3B

2

In order to relate B, to Bl’ the observation is made that E;l waves

2

incident on region 1 of the lower wedge air-dielectric interface span the

+ B/2 and reflect as E: in direction

angular directions Wp = B/2 < < ?

b
]G




w., = 38/2 < a < w. = B/2. Thus, at @ = = 8/2,

E : B
Nl' |
- =fa(N=R) /2 ) V(w) {
F.‘ - R‘ o Jka (T-8) /2 ) u‘kh‘\ dw (3.28a) i
w._ -8
v
and !
\\'r
£, p, o IRRLHERIG ) oI W (W) gy (3.28b)
W -R

The reflection coefticient along regfon 1 of the lower afr-dielectric in- .
tertace {8 now detined as
- -~ ~jkap R .
- R S 1 o= R Y 1.29)
Y ¥ Sllzl B, ¢ l! l,lr,!l 5 ( |
where TT has been {ntroduced in (3.21a).  On rveplacing B, in (3.28b) by i
i |
‘ + - : k - 1
using (3.29) and combining E_ | with F'l‘ one obtafins tor the surtace tield |

=S

along regfon ) on the upper wedge wall the expressaion
R R ] ® i

W~

™8 rTasth :

s Vka (<) /2 & : oty |

B, = B e Jka(N-gy) /2 v// ‘k’*ﬁ"l v\kk(w\ a (1.30) |
22 o . T

“'1‘—&“ },

Again allowing the reflection coefficients to be angular dependent and ob- L

f

serving that {t r: = "(w) then F; must equal (e + 3), eq. (3.30) bhecomes |

!

{

-fka(n=-8)/2 /7 T(wo+ R g ) ,

K, & B & TR / Lv B 11+ Fony] o38O o (3D !,

i w..=28 T !

r “-h

where [(y) {8 given by (2.9) with vy replaced bv .

By continuing the above process of tracking beam retlections trom

e —————————et—

. th
the wedge walls, (t evolves that the surface tield along the n region

-20-
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ot the upper wedge wall can be approximated by the {ntegral expression

W~ (=1 ) B

1
g - = jka (1=8)/2 / n=1 M(w + md) JkW(w)
' _/ (14 (W) T e o (3.32)
w‘,—nxi o | =i

Thus, along the plane 8 = 3/ between the apex v = 0 and the transftion re-

glon r = Ty the surtace electric fleld {s given by

N
E =T E ; 3.33)
z lzn 5
n=|
where R~n fs specified by (3.32) and W = NB. The integer N {denti{ties

the number of regfons along the upper wedge wall that are directly {lluminated
bv the plane waves as they progress toward the tip and are multiply retlected

from the wedge afir-dfefectric {ntertace. Note that when n = N 2 WOy -
nld = 0; hence, the final wave constf{tuent {n F:n {s normally tactdent on the

upper wedge wall. As was pointed out fn [24], this plane wave {s tangent

to the caustic at r = a, 0 = R§/2,

For n > N, the integral (3.32) describes surface {llumination for waves

progressing back toward the slab regfon. When n = 2N, w = -y the asso-

vln Al
cltated plane wave constituent {lluminates regfon | on the upper wedge wall
at observation point (rT. ~11/2) and {s {ncident at an angle of Wy measured
to the right ot a unit normal to the wedge wall [14]. Hence, the surtace

{l1luminat fon consf{dering both right-going and left-going waves {s given by

the expression

E =% FE " 0, = NQ (33
n= |

which results fn totegers being evaluated numerically between the limits

-)1=




-W. < W< W,

T T
The remaining field components can be inferred from (3.25) and (3.32).
Hence,
2N 2N
Hr = ¥ Hrn ) He =z Hen (3.35)
n=1 n=1
with
-(n-1)8
B wp~(n n-1 - )
R =L 3kal=8)/2 j cos u [1 - TGw] 1 —UH8) kW) 4
g B n=1 FT
b (3.35a)
and
-(n=1)8
B g % sl n ]
S b sin w [1 = T 1 I Jki@,,
n=1 T
wT-nB T

(3.35b)

The above expressions, eqs. (3.34) and (3.35), are assumed to give the

surface field at observation points r<a, i.e., in the region shielded by

the caustic.

The justification for this assumption is that complex dif-

fraction effects take place when the incidence angle w passes the critical

angle Gc, which is given by Gc = sin_l(ll /E;) and corresponds to a branch

point.

The integration paths of (3.34) and (3.35) encounter multiple branch

points that are introduced by the multiple reflection coefficients in the

integrand.

These branch points establish lateral wave-types that constitute

the dominant field within the caustic ([24].

Although the integration paths lie in the range -w

<w<w numerical
T i

evaluation of (3.34) and (3.35) as well as experimental evidence have in-

dicated that no measurable energy is reflected back into the slab.

a)la

This

I ———— |

TN S——————SC



results because the reflection coefficienrs have magnitudes less than or

equal to unity and as more and more of these are included in the integrand,

they reduce its magnitude rapidly after the critical angle has been passed. |

-5




4. THE FAR FIELD

Using the theory presented in Section 3, the tangential electromag-

3 netic field components can be calculated at a suitable number of points

along the surface of a given wedge. From the results of Section 2, the ¢
evanescent field external to the slab can be determined along a hyvpothetical

wedge boundary extending out to infinity radially, as diagramatically il- i

v

E lustrated in Fig. 8. These radial lines, in conjunction with a circular

: path at infinity, enclose a domain D, occupied by free space which ic

external to the diclectric slab-wedge radiator. Since domain D contains

no sources, Kirchhoff-Huygen diffraction integral can be applied to find

the fields radiated into the region D in terms of the tangential fields

on the boundary of D, designated BDi, i= 1,2 and o, in Fig. 8.

In free space, the radiated electromagnetic field, E_(r) satisfies

the two-dimensional wave equation:

2 2 o
(V2 + k3 E_(x) 0 (4.1)

where Ez(g) is the radiated field, r is the position vector to some point

P in D where the far field is to be determined, and ko is the free space

[

|

wavenumber. Let G, satisfy the equation f
!

(V" +3%) 62D = -d8@x-z2") (4.2) |

where §(r - r'), the Dirac Delta function, represents an infinitessimal t
l

point source of unity magnitude at r = r'. By first multiplying (4.1) |
by Go and (4.2) by -E_(r'), subtracting the two, then integrating the re- ;
|

sultant expression over the surface enclosing D and using Green's second

-l




identity in two dimensions, it evolves that the far field can be obtained

from the expression

-] ag* 4.1)

where n is the unit normal to the curve C pointing into the enclosed area D
and dR' is an element of arc length on C. Clearly, (4.3) is an integral
solution for the far field Ez(g) in terms of the boundarv values Ez(E')

and the Green's function GO(E'E')' Since the two-dimensional radiation
condition ensures that the contribution from the boundary of D at infinity
vanishes and since the evanescent field decays very rapidly along the hvpo-

thetically extended wedge surface, the integral (4.3) needs to be evaluated

only a short distance past the interface between the wedge and the slab.
The solution to (4.2) is a Hankel function of the first kind [25)
(l) ) /
6y = 1 e, R=jrrl, (4.4)
which in the far field (large koR) asymptotically reduces to

J(k R + 1/4)
b
(21Tk R)

Since in the far field R is approximately parallel to r, it follows

from geometrical considerations (see Fig. 8) that
RIr+r'"cos (§+8/2) =r + ' sinu), (4.6)

where & i3 the angle measured from the forward direction, i.e., from the
positive y axis, 2 {s the apex angle of the wedge, and u is the angle

«)%a

et IR
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between the normal R to the wedge surface and position vector R. The

i normal derivative of the Green's function can then be shown to take the
k form

BCO 1 QGO

-an— = -—; %— - kO COB(U)GO (“'7)

with Go given by the asymptotic form (4.5).

From Maxwell's equation in cylindrical coordinates, the normal deriva-
tive of the tangential electric field is related to the tangential magnetic

field by the expression

3Ez N 1 3Ez
= " n . VEz " %—' = -jmuoﬂr (4.8)

Combining (4.7) and (4.8) with (4.3) gives the radiated far electric field

Ez(g) ~ jkoGo [éos(u)Ez =T Hr] g 4.9)

9 and 302

1

In (4.9), the integration ranges over the two segments BD1 and BDZ defined

in Fig. 8, G° is given by (4.5) and (ko, no) are the wavenumber and the in-

trinsic wave impedance of free space. The integration of (4.9) is carried
out along both wedge surfaces. As will later be discussed in greater de-

tail, Romberg's method was employed in the analysis of actual wedge prob-

lems.




5. NUMERICAL RESULTS

The wedge antenna is completely characterized by three parameters:
kod. the relative half-width of the slab with respect to the free space
wavenumber ko‘ kOO. the relative length of the wedge and € the relative
permittivity of the antenna material. These values are varied so as to
determine the effect each has on both the surface field and the far field.
In addition, surface and far fields are calculated for two antennas with a
relative permittivity of silicon, ir = |2. For these two antennas, our
theoretical results are compared with an alternative approach based on the
local mode theory [11]. The silicon material with 5( = 12 {s currently un-
der study for use {n millimeter-wave transmitters and receivers being de-
veloped by the U.S. Army. The antenna parameters examined are listed {n
Table 1, with identifying letters A through L. Also included in this table

are the values of w ] and koa. The angle w., is the incident angle for

i i T

the plane waves in the slab which excite the wedge. Recall that the range
W, SV, specifies the integration limits for the wedge surface fields.

The parameter 8 {s the apex angle of the wedge and koa i{s the location of the

caustic relative to the free space wavenumber. Antennas J, K, and L are of

particular interest because of the availability of empirical data collected

by Maurer and Gopen [21]. The material used in the experiment was rexolite

T AT

with a relative permittivity €, = 2.396.

In Section 4 and in eq. (4.9) it was shown that a far field evaluation
requires first calculating the field components E_ and Hr along the planar
surfaces FDI and 3D,, identified in Fig. 8. Physically, these surface field

components must be continuous along 23D

e —— e e AT T

1 and dD,. Hence, we imposed the con-

-
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dition that the electric field on the surface of the dielectric wedge be equal
to the electric field in the evanescent region of the slab waveguide at the
trnasition point r = rT. 8 = 8/2, i.e., we equated (3.33) to (2.3). The

small discontinuity in Hr across the transition point was found to be accep-
table (see, for example, Fig. 13 through Fig. 16). In addition, it was con-
venient to normalize the surface wedge field by setting the multiplicative

factor in (3.32% B, exp [-jka(T - 5/2)]’t0 unity.

1

A. The Surface Field

The relative magnitude (in dB) of the surface electric and magnetic
tangent fields as well as their respective phases are plotted versus the nor-
malized coordinate koy' in Figs. 9-16. Values are plotted from the tip
(koy' = korr). past the transition region (koy‘ = 0) and extend into the
evanescent region of the slab waveguide. The phase difference at the apex
of each antenna is normalized to read 4I radians. 1In Figs. 9a and 9b and
Figs. 13a and 13b, the wedge length is increased while kod and €, are held
fixed. Figs. 10a and 10b, together with Figs. l4a and 14b show the effects
of changing the relative slab width kod while Figs. lla and 1llb, with Figs.
15a and 15b depict the surface field as €. is changed. In Figs. l6a and
16b, the surface field for two antennas with E, = 12 is presented. How

these changes affect the far field will be discussed shortly.

Of particular interest is the phase velocity v , along the wedge
L

ph,v
surface in the y'-direction (forward direction). In order for a wave to
be launched from the wedge in this direction, the corresponding component

of the wavevector kv' must equal the free space wavenumber ko (this follows

from Snell's law). The wavevector k is defined as the spatial gradient of

-28-~
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the phase of the wave function (in our case, E ). Since kv, = v' k,

where y' is a unit vector in the positive y'-direction, we may formulate

the relation

= ._3_ 3 ' /
kg ko M (ARG(EZ) koy ) (5.4)
where vy' = r - r'. When this quantity is zero, the surface wave is launched.

T
Graphically, this is determined by plotting the function Arg(Ez) - koy'

and noting that when the slope i{s zero the surface wave enters the 'fast
wave' region and radiation becomes possible. This condition is illustrated

in Figs. 9b, 10b, 11b, and 12b.

B. The Far Field

As the length kol of the antenna is increased (see Figs. 9 and 12)
there results an expansion of the spatial interval on the surface of the
wedge over which the surface field has a phase velocity in the y'-direction
equal to the speed of light. Consequently, one expects enhanced radiation
capability. 1In Figs. 17 through 20, the directive gain g4 is plotted versus
the angle £, which is defined in Fig. 8. For two-dimensional geometries,

the directive gain is given by

= .Z'rrsr/Pr (5.5a)

g4 ad °

where Sr is the real Poynting vector in the radial direction, expressed in
2 %

terms of the far electric field by S = ]EZ(E)} /no. T ™ (uo/eo) the

intrinsic impedance of free space, and Prad is the power radiated by the

antenna. From Fig. 17, it appears that a larger value of koﬁ leads to more

power in the forward direction.




By decreasing the width kod of the antenna, the endfire characteris-
tics are also improved. Thus, in Fig. 18, antenna E has more directivity
than either antenna C or D. This is most likelv due to the fact that an-
tenna E possesses a larger 'fast wave' region along the wedge surface than

either antenna C or D, as is evident from Fig. 10b.

In Fig. 19, the relative permittivicy fr is varied. Decreasing this
parameter also increases the size of the fast wave region (see Fig. 1l1b)
and thus antenna G has better propagating characteristics than either E or

—

Pe

Fig. 20 demonstrates that directive antennas could be designed with

silicon (€r= 12); however, they would have to be very long or very narrow.

It was also observed that slightly changing the frequency, while not
affecting the main beam, can increase or decrease the side and back lobes
significantly, indicating that a more desirable combination of k)d. kol,

.

and €, can be found for a given application at a given frequency.

The directive gain for antennas H and I, with € = 12)are compared
to patterns generated by a local mode approach (11 ] in Fig. 20. In the

end-fire direction, the two methods give comparable values for the gain

-1

function. When 'I! » 800. the local mode theory vields results which de-

crease more rapidly than the plane waves approach; however, for these ob-

servation angles, the gain is already 20 dB below its maximum value.

In Figs. 21, 22, and 23, experimental results [21] are compared
with theoretical ones. The normalized coordinate koy' has its origin in

the wedge surface at the transition region r' = r_ (see Fig. 8) and is

w0




directed toward the wedge tip. The parameter ko is the free space wavenumber.
The curves are normalized so that the experimental and theoretical values for
the peak fields coincide. Near field experimental values were measured ap-
proximately one millimeter away from the wedge surface. The small fluctua-
tions or ripples on the experimentally determined curves in Figs. 21-23 are
most likely due to the presence of standing waves between the probe and the
absorbing material surrounding the wedge and probe in the parallel-plate ex-
perimental setup [6]. As is evident from each of the figures, the experi-
mental values dip downward across the transition region, while the theoretical
values tend to tilt upward. There appears to be a discrepancy of about four
to five dB between these two results. It ought to be pointed out that the
location of the wedge, relative to the experimentally-determined surface

field values, was difficult to ascertain from the experimental secup* and

that an average value was used for the relative permittivity of rexolite.

The theoretical curves, nonetheless, do exhibit the correct shape for the
surface electric field, i.e., a monotonicallv-increasing amplitude which

peaks and then falls as the tip is approached.

*Unfortunately, the experimental setup has been dismantled, which prevented
duplicating the measurements to further substantiate their validity.
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6. CONCLUSION

A theory has evolved which appears to vield an approximate solution
for the surface field on a dielectric wedge. The surface field exhibits
meaningful physical characteristics such as magnitude which peaks and a
phase variation which predicts launching. The analyvsis is very general
and can be adapted with relative ease to a variety of two-dimensional
tapers such as wedges with curved boundaries. In addition, certain three-
dimensional geometries such as cones or pyvramidal-type structures might

be amenable to such analysis.
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APPENDIX A. RAY OPTICS

The ray optical solution to the reduced wave equation
(V2 + k%) u(r) =0 (a1)

is sought. The quantity k = '/Uo“o{r denotes the wavenumber of a
homogeneous lossless dielectric of relative dielectric constant B A
time dependence of exp (iwt) is assumed and suppressed. To obtain a
unique solution of (Al), either the tangential electric and magnetic
fields at the air-dielectric surfaces must be continuous or the tangent
electric field on the boundary must be linearly related to the tangent
magnetic field (the so-called "impedance boundary condition'") which can
be expressed by the relation

Zs(g) du(r) B

n v

on B (A2)

-ik u(r) +

where v is the outward normal to the boundary surface B, n is the intrinsic
impedance of the dielectric, Zs(g) 1s a surface impedance, and u(r) repre-

sents the transverse electric field component Ez.

Following the development by Maurer and Felsen[l6], a geometric optics

solution for large k of the form

ikS _(r)

N
WO~ IoA () e P (AD

p=1

is assumed. Each species (denoted by p) has an amplitude Ap({) and a

normalized phase Sp(g). Inserting (A3) into (Al) and equating to zero,
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the coefficients of the k’ and of the k terms give, respectively, k‘
L) (A4)
and
2Vs .7 A + A V2 s =0 AS
o () S0 + A (D) o (A5)

for any species p. Eqs. (A4) and (AS) are, respectively, the eiconal and
transport equations of geometrical optics. Their solutions provide ampli-

tude and phase variations of the rays. It should be emphasized that ray

e s W SRRt

solutions are only asymptotic expressions and are not full wave solutions.

e

One way of explaining the accuracy of a ray solution is to compare it with

the asymptotic form of a full wave solution. |

Substituting the ray solution (AS) into the boundary condition (A2)

yields
N
ik s_(r) aS_(r)
T e PT A@ -1+z (@ —F—1=0 (46)
g} ;5 v

Eq. (A6) can be satisfied by postulating the pairwise vanishing of terms

so that

on B (A7)
Equating phases of the exponential terms in (A7) yields

kS =k S 4+ 2Mm on B, (A8)
P q

Yk




2 o i i

PRI O\ S

5
where m is an integer such that initially =%H is of order 1. From the

eiconal equation (A4) and boundary condition (A8), it can be shown that

3S 3S
;—R S on B (A9)
\V} v

The minus sign enters into the above equation because reflection takes

place at the boundary. Using (A8) and (A9) in (A7) gives

Aq =T Ap on B (Al0a)
where
Z (r) -1
y el o (A10D)

[ is recognized as a reflection coefficient and Es = Zs/n.

If the reflection coefficient is constant on the boundary B, it is

possible to construct an alternative formation without destroving the
specular reflection condition (A9). 1In this formulation, the phase of T i
is incorporated into the phase function S rather than being totally as-

sociated with amplitude terms as was done in (A10). Rewriting (A7) in

- G o~ g

the form

ik S ik S iargl’ + ik S
A e 14 AP e Pa Ap]FI e A (Al11)

-~

with [ defined by (A10b), leads naturally to the relations

Ay " Ap]r[' 3 Sq = k S, + arg T - Inml. (A12)

=38




1f, furthermore, || = 1, then arg ' = -i % T and (Al2) reduces to i

A =A |, (Al3a)

kSp-kSq+i!LnI‘+2mH (Al13b)

where m is an integer.
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APPENDIX B. COMPUTER PROGRAM DOCUMENTATION

A. Surface Field

Two computer programs are used to compute the surface field for the

wedge antenna. Since only the tangential components of the electromagnetic
field are required to calculate the far field, only (3.34) and (3.35) are

used. They are repeated here for convenience.

N vypne
s e—jka(H—B)/Z e—jkr sin w + j kaw L * T Xa
z 1

n=']. WT -(n-I)B
n-1
I (ILY—E:%QL) dw } (B1)
m=1 FT
N wT-nS

o w8 fl o-Jka(-8)/2 g Jkr sin v + 3 kaw o _ pey 3.
r n

n=1 .wT -(n-1)8
n-1

Gy (Eiﬂ_i_ﬂﬁl) cos w dw } (B2)

r.n—l

m=1 T

Program 'One' evaluates the r-independent part of these two integrands,

namely:
n~1
T

m=1 T




n~-1
- Thup } 1 LREED kv ado g
n~-1
m=1 L

CoS w (B4)

as vector quantities and stores these vectors in a disc file as input

data to program 'Two' to be integrated with the r-dependent parts of the
program. This method is employed since calculating the product of reflec-
tion coefficients is very time~consuming and can be done once for each set

of antenna parameters.

'One' requires as input: kod the relative half width of the slab,
koi the relative length of the wedge, and €, the relative dielectric con-
stant. Five values are calculated per 8 radians on the real w-axis, start-
ing with WT and ending when the magnitude of the product term is less than
10-5 since this is the only term affecting the magnitude of the integrand

and has a maximum value equal to 2.

T

Program 'Two' computes the surface field for

kr
21

Integer ( L ) *8 4+ 1 (B5)

points on the wedge surface or 8 points per wavelength in the dielectric

material.

'Two* reads the two vector quantities from the disc file created by

'One' and multiplies each vector by the appropriate function of r and V:

e~jkr sin w (B6a)

e-jkr sin w (R6D)

n

The trapezoidal rule {s used to evaluate the integral. The two tangential

—




surface fields are in a disc file as input to program 'Farfld.'

Program 'Farfld' reads the two tangential surface fields from 'Two'
and integrates these vectors in (4.9) using Romberg's method of integra-
tion. This requires integrating the surface field using first two points
per dielectric wavelength, then four points per dielectric wavelength, and
finally, eight points per dielectric wavelength. The far field is calcu-

lated for 5° increments from 00.5 £ < 180°.
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FIG.

21.

Relative magnitude of the electric field along the wedge
surface and along its geometric extension into the
evanescent region of the slab - experimental vs. theo-

retical results.
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